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1. INTRODUCTION. The Toda Lattice appeared originally [1]
as a mechanical system of particles on the line governed by a
certain type of nearest neighbor interaction. With the work of
Flaschka [2], the relation with Lie group theory, particularly
earlier work by Arnold [3] on the rotating rigid body and its
generalizations, came into the foreground; this relation has been
extensively developed since, most notably in recent work by
Kostant; Olshanetsky and Perelomov; Khazdan, Kostant and Stern-
berg; and others. In these approaches, the generalizations of
the Toda Lattice are developed in terms of the natural symplectic
structure on the cotangent bundle of a Lie group.

Now, our present-day notion of "symplectic structure" has its
roots in Elie Cartan's book "Zecons sur les invariant integrawx.”
The central notion here was that of Cauchy characteristie of one
or more differential forms, A more definitive version of this
concept was given in Cartan's later book "Les syatemes differ-
entiablles exterieures et leurs applications geometriques.”" 1
have set myself the task of developing Cartan's beautiful ideas
in the context of contemporary mechanics and physics [8]. In
this paper I want to indicate how the work cited above (and some
of my own[5]) may be viewed in a Cartanian framework. In addi-
tion to the obvious advantage of geometric unification, for its
own sake, I believe that certain models with interesting
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192 ROBERT HERMANN

properties might turn up later when this analysis is pushed
further,

First, let us review Cartan's ideas, using the standard nota-
tions of differential geometry on manifolds [ ]J. Let M be a
manifold, D(M) denotes the graded associative algebra of dif-
ferential forms on M., d denotes exterior derivative.,  An
exterior differential system, E, is an ideal of O(M} “-which
is closed under d. Given such an E, the vector fields V on
M such that

i(V)(E) cE (1.1)
are said to be Cauchy characteristic for E. (i(V) denotes the
operation of contraction with respect to the vector field V.)
The set of all these vector fields defines a foliation for M,
(We shall suppose that the foliation is non-singular in the
sense that its dimension is constant at each point of M.,) If
the foliation is regular, i.e, if a quotient map m: M - M
exists whose fibers are the leaves of the foliation and such
that M' 1is a manifold, then the system E lives on M', in
the sense that there is an exterior differential system E' on
M' such that:

E 1is generated by w*(E') .

Many applied problems involve determining something about the
Cauchy characteristic foliation and the quotient space M', In
problems deriving from mechanics and the calculus of variations,
E 1is generated by a 2-differential form w such that:

do =0,

In this case, it is readily seen that there is a 2-differential
forg w' on M' such that:

2 dw' =0 and w = m{u') .

E' 1s generated by w'. Since w' has no characteristics vec-
tors, it defines M' as a symplectic manifold, Thus we see
that Cartan's approach suggests a different insight than that of
other recent work on geometrical mechanics; it is not the mani-

fold on which the equations of motion are initially defined that
\
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admits the symplectic structure, but the set of all trajectories,
Of course, two forms w and Wy could have the same Cauchy
characteristic foljation, thus providing two symplectic struc-
tures on the trajectories.

One obtains the more traditional equations of mechanics and
the calculus of variations by choosing certain local canonical
forms for the 2-differential form w. Typically, these‘involve
natural coordinate systems on the tangent and cotangent bundles
to configuration manifolds Q. However, another feature of Car-
tan's work is what he called the method of the moving frare,
j.e, the choice of bases of 1-differential forms which are not
the differentials of coordinates but which are better adapted to
expressing the natural geometric properties of the situation.

In this paper I will essentially be adapting this "moving frame"
approach to the study of the generalized Toda Lattices. I will
start off by assuming that w has a certain form in terms of
certain moving frames for M, Certain general equations will be
obtained. In order to understand these equations, I will then
specialize to the situation of the work cited above (where M

is a submanifold of the cotangent bundle to a Lie group). 1
hope to present an analysis of other situations in a later work,

2. CAUCHY CHARACTERISTICS OF CLOSED 2-DIFFERENTIAL FORMS.
First, we shall review certain differential-geometric funda-
mentals [8]. Let M be a manifold, and let w be a closed
2-differential form on M, If v € T(M) is a tangent vector to
M at a point p € M, the inner product or contraction of w
by v is denoted as i(v)(w); it is a 1-covector at p, i.e.
an.element of the dual space to the tangent space to M at p.
Similarly, if V 1is a vector field on M, i(V){w) 1is defined
as a l-differential form on M.

DEFINITION, A tangent veetor v € T(M) o said to be Cauzhy
characteristie for w if i(V)(w) = 0, Similarly, a tangent
veetor field V +te eaid to be Cauchy charactcristic if
1(V)(w) = 0.

i oA S At o R
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ROBERT HERMANN

In this paper we shall work with a special choice of the mani-
fold M and the closed 2-differential form, Namely, suppose
that we are given the following data:

A vector space X and a manifold Y, such that
MasXxY,

An absolute parallelism on Y defined by a basis oa,
1sa, bsm, of l-differential forms on Y,

A basis Xy 1si, §sn,

of the linear functions on X.

Adop: the summation convention on the indices given above,
In addition, suppose that m>n; introduce the following addi-
tional indices and the summation convention on these indices:

n+l1<u, vsm

Let fac be the structure fimotions of the absolute parallelism,

fe., the functions on Y such that:
b

a ¢ c
de fbce AB,
Llet G be the automorphism group of the absolute parallelism,
j.e. the group of diffeomorphism g:Y = Y such that:
g*(6?) = o® .
It is known that G 1is a Lie group and that it acts simply on
Y, i.e. the orbits of G can be identified with G itself, We
shall suppose that the orbit space

Z = G\Y

is a manitald and that the quotient map Y =+ Z is a submanifold
map. The ‘structure functions f:b are constant on the orbits
of G, hence are pull-backs under the quotient map of functions
on Z. We shall make no notational distinction between these

functions.
Now, set:

w*= d(xiﬂi) .

R UM S L e o
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Let us now compute the Cauchy characteristic vectors of w,

using the relations given above.

i

i
w=dx1A9 +x1d6

Qur job is to put the differential form « into its algebraic
canonical form. To do this, note that -

L

w = (dx, -xjfaijea) Ao

i LU v
+ X.
x‘fuve A6,

Set:

J .a
oy dxi - xjfaie

UJ'

i LU v
xifuv 0" AD .,
Then, we have the definitive formula:

w=ail\61+m'. (2.1)

where the differential forms on the right hand side of 2,1 are
linearly independent. Thus we have proved the following result:

THEOREM 2.1. The Cauchy characteristic vector fields V of
w egatisfy the following equation:

0) ) = 1D
(V) (') (2.2)

COROLLARY. The dimenaion of the Cauchy characteristic tangent
vectors to w 18 cqual to the dimension of the Cauchy character-

2)

"

iatie tangent vectors to w'.

We can.now work out the equations for the Cauchy characteris-
tic vector .field V defined by relation (2.2) in more detail.
First, let us work with the second relation on the right hand
side of (2.2). Suppose that we impose the following relations:

e¥(v) = n" (2.3)

where the h' are functions of the x's and the f's. They must
then satisfy the following condition:

TR s O vi.
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i u _
X fub 0 (2.4)

With this choice for these functions, we see that V 1is com-
pletely determined by the first part of relations 2,2:

ei(v) =0,

V(x,) = xjfgi oY(v)

. xjfﬂi hY (2.5)

Here is an important geometric property of the Cauchy charac-
teristic vector fields of this form which is proved by the rela-
tions described above:

THEOREM 2.2, lLet V be a Caucly chuacteric! [o vector field
of w given by relations 2.3=.5., Ict WM X x 2 be the map
which sends the point (x,y) € X x Y =M /nio (x,2), where 2
to the orbit of G acting om Y whicii contalus the point  y,
Then, the veetor field V projects ‘nte X x I, {.c0 there io
a veator field V' on X x I such thar b ocnds ol orbit

curve of " V into an orbit curve of V'.

In practice, we often start off with V' and construct V,
Notice that it is essentially this construction which defines
the symplectic structure for the orbit curves of V'; the situa-
tion is simplest in case Z reduces to a point, i.e. in case
the f's are constants. This means that Y is equal to the
Lie group G itself, with G acting by left translation. In
this case, we shall see that the equations for the orbit curves '
of :yi are the differential equations for the Toda Lattices and .
their.generalizations.

3. SPECIALIZATION TO THE ABSOLUTE PARALLELISM DEFINED BY THE
LEFT INVARIANT DIFFERENTIAL FORMS ON A LIE GROUP. Let us now
apply this Theorem 2.1 to the case that the 6% are the left-
invariant Cartan-Maurer forms for a Lie group G, and the Xy
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are the dual linear coordinates for the dual vector space ’.'.‘d
of the Lic algebra of G. Consider X as « ~ G, where 7 |is
the linear subspace of '.Gd defined by the rclations X, 0.
Let 7' be the crthogonal complement of 7 in @ ,

THEOREM 3,1, At a point X of 4, the dimenaion of the
Cauchy characteristic vectors of the 2-differential form-. w' is
equal to the dimenaion of the eharacteristic subspacc of ‘the

e gy

skew-gymmatrie bilincar form

(J] 102) < X([J] a\lz])

PR e RE TS

on 7' 4Aneclement Jy € J' 1is Cauchy characteristic for
the form w' at x iff the follawing acondition is satisficd:

2

=Ter—ag

coAdJ](x) €q (3.1)

REMARK, coAd means the dual of the adjoint representation
. of the Lie algebra %, i.e.

e = = =

coAd(A)(x)(B) = -x([A,B])
for x€ 9, ABR€EY .

4, FLASCHKA VECTOR FIELDS ON VECTOR SPACES. The conditions
found for Cauchy characteristic vector fields in previous sec-
tions are sufficiently interesting and important that it is
worth our while to pause and make some general definitions, Let
% be a real Lie algebra, Let ?}d be its dual space. Let X
be a linear subspace of Sf}d. tet X' be the orthogonal comple-
ment of X fn €, i.c. the set of elements A €% such the
X(A) =0, .,

DEFINITION, 4 Flaschka map for the vector space X 18 a map
F:X = X' cuch that the following eondition is satisfied:

coAd(F(x))(x) € X (4.1)

for all x € X.

R = - .
w Ll LN MBS (Cabins A ikt o e GARNEE S SR e o e L L .'r_tx'i} ol




198 ROBERT HERM:M:

With condition (4.,1) satisifed, we can define a vector field V°
on X considered as a manifold, Since X s a vector space, .
a vector field is just a map X = X. Lot us then set:

V'(x) = coAd(F(x))(x) (4,2) i

B o et o e, - 23

for all x € X, i
Condition (4.1) of course is precisely that which guarantees ’

that V' defined by formula (4.2) is indecd a well-defined vec- 5 :
tor field on X, MWe shall call V' a Fluu skl vootor field, i ‘
since Flaschka's work on the Toda Lattice fits into this frame- )

. 4

work very naturally,
The orbit curves of the vector fields V' are then the solu-

tions t - x(t) of the following differential equations:

dx/dt = coAd{F(x{t))(x(t}) (4.3)

Conversely, if we start off with the nonlinear differential equa-
tions 4,3 (which would be the normal thing to do) we would have
the following properties:

THEOREM 4.1, Congider the syetem ci° ordinavy Jlfferential
equations defined by relations 8,3, wiere [ “u a Flaschka map, i
a8 defined above, Construct the mmifold M «ws X x G, and
construct the 2-differential form w on M a in the previous
gection, Then, the solution curves of cquebion 4.3 are the
projection in X of Cauchy characteristic curscs of w, In
partieular, this imposes in a naturzl way a ayrplectic structure
on the space of solutions of 4.3. ;

So far we have been working with an arbitrary lie alqebra “.

For a reductive Lie algebra, i.e. one for which ¢ and ?’ are
naturally isomorphic, the formulas can be readily recast so as
to be closer to those in the applied mathematics literature.

5. THE FLASCHKA MAPS AND VECTOR FIELDS FOR REDUCTIVE LIE
ALGEBRAS, Let us now make the assumption that there is a non-
degenerate symetric bilinear form .¢ on the (finite dimensional)

g

1
A
4
W
4
<
i
i
1
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Lie algebra ¥ which is invariant under the adjoint represcenta-
of % on itself, .#sets up an isomorphism between % and its
dual space ‘.d. Let ,# be a linear subspace of ’.’)d; under this
identification of %9 with %, Z is identified with a linear
subspace of %. The orthogonal subspace that we denoted as /'
is then identified with the orthogonal complement of 7 - with

L
’ “

respect to the form .#, i.e,
g = (A€ F:#B(A,4) = 0} ;
A Flaschka map is then a map j
B:f » &'
such that the vector field
V(A) = [B(S),A]

; is tangent to 4.
: Here are some ways of constructing such maps.

R T 5 L,

6. EULER-ARNOLD VECTOR FIELDS ON LIE ALGEBRAS, In this sec-
tion we shall review certain methods by means of which differen-
tial equations may be defined which have some of the properties
suggested by the classical rotating rigid body and the recent ]
work on Toda Lattices. These differential equations are essen-
tially defined by means of certain types of vector fields on Lie

B

algebras.
Let ¢ be a Lie algebra.
a vector field (in the sense of manifold theory) is a map

V:%-'2, The orbits or integral curves of such a vector field
are the curves t - A(t) in € such that

b dr/dt = V(A(L)) . (6.1)

Such a vector ficld will be said to be of Fuler-Armold type

Since % 1is itself a vector space,

P2 s e e

if it is of the following form
V(A) = [B(R),A] (6.2)

where B is some map from @ to ¥.
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) .
In [5) I have shown how the construction of such o -3 and
V given in the original Mlaschka work on the Toda Lattice may
be dascritea in terms of certain mgraccas  diachd stradtures

on Lie algebras. Here is a more systematic study of this mater-
al.

7. JACOBI TRIPLES OF LIE ALGEBRAS. Let % be a real Lie
algebra. A triple ('.’1"',’50, %) of linear subspaces of ¢ is
said to defined a Jacobi triple if the following conditions are

satisfied:

(59, 4% < g°
[(9%,¢" 1< ¢*"
0

(7.1)

[(2*, ¢ 1c @
The linear subspace
g6+ 86 +6°

spanned by these three subspaces is called the fzcobi subopace

.of % associated with the Jacobi triple.

EXAMPLE. Jacobi Matrices. Let V be a vector space and let
V].....Vn be linear subspaces of V. Llet % be the Lie algebra
(under commutator) of 1inear maps V - V. Set:

9°={A59:A(v1)=v1. i=1,...,m
+s'_ D of —
@b = e V) eV, . P sl

(Thus G- are the shift up and shift down operators.) It is
obvious that the commutation relations 7.1 are satisfied. If the
Vl.....\(n\ are one dimensional linearly independent subspaces
which span V, and if a basis is chosen for V consisting of
vectors from these subspaces, it is clear that the operators in
A are represented by classical Jacobi matrices, i.e. nxn
matrices with non-zero entries only on the diagonal, sub, and
super diagonal lines. It is the point of view developed in [5]

T

(R e an

e 45 e ey
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that the correspcnding gradation of ¢ gives rise to the Toda R
Lattice phenonmenon,

T e i PR

Y

8. SIMPLE ROOT SYSTEMS FOR SIMPLE LIE ALGEBRAS AND JACOB!
TRIPLES. It is known that the Toda Lattice models are closely
related to the algebraic properties of Lie algebras, particularly
, the properties of the simpie oot systems of semisimple. Lie alge- ' A
i bra. In this section I will show how the simple root systems :
E generate Jacobi triples. ;
f

TR St

let ¢ be a finite dimensional simple Lie algebra. For the
: moment, assume that the field of scalers is the complex numbers. K
¥ We shall return to the case of the real numbers later on. It
ﬁh will of course be assumed that the reader knows basic semisimple
§ Lie algebra theory.
‘ Let € be a Cartan subalgebra of ©. Ad @ acting in @
is then completely reducible. The non-zero eigenvalues of Ad %,
considered as linear forms on ¥, are called the roots of the
Lie <'gebra. Let r =dim ®. (r is the rank of the Lie alge-
bra %). A set As--esh, of roots is said to define a simple

r
root system if the following conditions are satisfied:

o Vo abd e

Each root X can be written as a linear combination
of the A].....Ar with coefficients which are inte-
gers, and which are simultaneously all non-negative

or non-positive. -x],...,-xr are roots.

That such simple root systems exist, and serve to determine
the isomorphism class of the Lie algebra, is a well-known fact 1
: of Lie algebra theory. ;
| Fix such a simple root system. let (A), i =1,...,r be
t a collectf§} of root elelemtns, i.e. vectors of % such that

[A,A1] = Ai(A)Ai(no summation)

for all A€ @.

(1t is known from Lie algebra theory that there is, up to a
constant multiple, just one such root vector.)

Since Xi -AJ is not a root, for 1 # j, we have:

nd e s

IS, X TS Sk gl s T e R b
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[A‘I’Ail =0 foris .

Similarly, let A_, be a chain of root vectors for the root

-xi. We then have
[A_i.A_J] =0 {/] .

Also, i
(A lee

Thus, if we let @* ((6’6) be the linear subspace spanned by

the Ai(A-i)' and let 'ao be @&, we sece that ('.')0,'.4'+.f.f,") L
forms a Jacobi triple. [

So far @ has been a complex Lie aloebra. e can form a real . h
subalgebra %' as the Lie subalgebra generated by the Ai ’A-i' [
(89, 6%, ") forms a Jacobi triple in . |

9. EULER-ARNOLD VECTOR FIELDS WHICH ARE TANGENT TO THE JACOBI
SUBSPACES. Let @ be a real Lie algebra and let (z*,%",20)
be a Jacobi triple of linear subspaces. Let 7 be the associ-
ated Jacobi subspace of . Let B: % -~ % be a map, and set:

V(A) = [B(A),A] for A€ &
Consider V as a vector field on % . HWe ask:

When is V tangent to the linear subspace 7 ?

To answer this question, suppose that B = gt + B0 + B™, where

80 7) c "0
1f A=A +a + A0 €z, then
12V(A) - (8%(A) +8%(A) +87(A), A%+ R0 + A"
Let us r;éw suppose that the following conditions are satisfied:
(8*(A),A%] = 0
[B°(A),A"] = 0

(9.1)

e wh ion B,

Lesteerire

a
i
i

on " ) ' = - 3 e Y vit e g —
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~

THEOREM 9.1, 7f* conditions 9.1 are aatisfied, then the Fuler-
Amold vector field V(A) = [B(A),A) o tamgent to the Jarobi
subgspace 4.

Proof. C(undition 9.1 implies that V(¥) c 7, which is the
condition that 7 be tangent to /.

10, JACOB! TRIPLES DEFINED BY AUTOMORPHISMS OF LIE ALGEBRAS.
Following a suggestion by Victor Kac {private communication), we
shall now shuw how Jacobi triples may be defined by automorphisms
of Lie algebras. Let % be a finite dimensional Lie algebra,
with the complex numbers as field of scalars. Let o:% = % be
an automorphism of this Lie algebra. Let X € C be an eigen-
value of o. Set:

50 = (A€ g:0(A) = A)
4" = (A g 0(A) = W)
™ = (A€ :o(A) = A7)

These three subspaces ('.'}0, ‘:+.$¢') then define a Jacabi
triple. This way of defining Jacobi triples is especially natu-
ral because automorphisms are classifiable if 2 is a semisimple
Lie algebra. The case where the automorphism is of finite order
would be of particular interest since Kac has classified them.
(See Section 5, Chapter X of [20]. It is also shown in this
reference how such automorphisms are related to graded structures
on Lie algebras.)

As an illustration let us construct the automorphism which
gives rise to the classical Jacobi matrices. Let V be a finite
dimensional complex vector space. Let

-
V-Vl"'..."'Vn

be a direct sum decomposition of V as a direct sum of linear
subspaces. Let A be a primitive n-th root of unity, i.e.

A =1, but M AT for j=2,....n0 .

Set

Soi

.

)
;
ll

- f
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u(v)-k‘jv for V€Vj. J= Veee.on .

Let % be L(V,V), the Lie algebra of all linear imaps: V - V.
o defines a linecar map {also denoted as o) of % -+,

a{A) = oha”! for Aew

Set
. (A€ ioa) = nl
Y2 (A€ io(h) = A
¢ = (A€ :a(A) = 2R .
We see that

:9°(vj) e vy for §= 1.
g‘(vj) < Vi

These relations imply that @ = @+ gt + € s a linear
subspace of @ which is represented by Jacobi matrices in the
classical sense, when a basis is chosen for V consisting of
elements in the subspaces Vj.

11.  FLASCHKA MAPS CONSTRUCTED FROM JACOBI TRIPLES. Suppose
now that @ 1s a reductive Lie algebra. Notice that the Euler-
Arnold objects differ from the Flaschkan objects only in that the
values of the former type of map do not necessarily lie in the
appropriate orthogonal complement. In this section we shall see
what sort of compatibility condition between the graded struc-
tures, and the AdG-invariant symmetric bilinear form .8:%x¥ -+ R
must be imposed in order to assure that the Flaschka conditions
are to be satisfied.

Suppose that (J'.g’.;{o) is a Jacobi triple of linear sub-
spaces of the Lie algebra % . In addition, let us suppose that
T: @+ % i4s a Vinear map such that the following condition is

satisfied:

e ———————eth KU NI IS S

R AT

o e e ———— —-

R vl )

T
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T(AA)) = [T(A,),T(A)] (1n.1)

B(T(A)),T(A))) = BAyh)) (1.2) .
: for AjuA; € G ‘
L HT(A)) = A for AES (11.3)

REMARK. Notice that, if @ 1is a Lie algebra of matrices,
then T(A) = transpose of A as a matrix, will have these prop-

erties.
Let us now suppose that the Jacobi triple, the T-operation and

the form 43 satisfy the following conditions:

gh =g (11.4)
g% = 4° (11.5)
(gt g =0 (11.6)
@zt g% =0 M.7)

Let us now define the 1incar subspace 7 of ¢ as the set of
all elements of & of the following form:

g =9+ 04T (11.8)

where J°, 40 are arbitrary elements of J'.‘yo. Define the
linear map B: 4 -+ ¢ by the following formula:

B(J) = J - T(97) (11.9)

THEOREM 11.1.  The map defined by foraula 11.9 han the
Flaschka ‘Fr-operty, i.e. Lhe following eonditiono arc satiofied:

[B(J),J] € ¥ , and
B(J) € #' . -
for JEL » and with :X' the orthogonal compliment of
with respect to the form B
.

gy o oA

B G B

R s, o T DT A <
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The preos of these statements is now an casy consequence of

our assumptions.

12. CONCLUSIONS. We have introduced a different geometric
way of constructing the ordinary differential equations models
which generalize the Toda Lattice, and which might be candidates
fur *integralle” or “partially integranie  sgstens.  Instead of
starting off with a Lie group given, as in the previous work, we
have begun at one stage more general, with an "absolute parallel-
ism." In the case where this parallelism does come from a Lie
group, we have codified some of the algebraic conditions which
seem to be involved. There is also potential for extension to
the field-theoretic situations by means of generalizations to
infinite dimensional manifolds, groups and Lie algebras.

REFERENCES

1. Toda, M., Studies of a nonlinear lattice, Physics Reports,
sec C Physics Letters 8 (1975) 1-125.

2. Flaschka, H. On the Toda lattiee I, Physics Rev. B9
(1974) 1924-1925, II Prog. Theo. Phy. 51 (1975) 703-716.

3. Arnold, V., Sur la geometric diffcrenticlie des groupcos
de Lie de dimension infinie et ses applications a I1'hydro-
dynamique des fluide parfaits, Ann. Inst. Fourier Grenoble 16(1)
(1966) 319-361.

4. Kostant, B., The eolution to a neneralizcd Toda Lattice
and representation theory, M.I.T. preprint, 1979,

5. Hermann, R., Toda Lattices, Cosymplectic Manifolds, Back-
lund Transformationa and Kinks, Part A, (Interdisciplinary
Mathematics, vol. 15), Math Sci Press, Brookline, MA, 1977,

6. Cartan, E., Lecone sur les invariante intearaur. Hermann,
Paris (1922).

7, Hermann, R., Differential Geometry and the Caleulus of
Vart@tions, Academic Press, New York, 1969. Second Edition,
Math.Sci Press, 1977.

8. Hermann, R., Left invariant geodesics and classical
mechanics on manifolds, J. Math. Phys. 13 (1972) 460.

9. Hermann, R., Spectrum-generating alachras in clasaical

mechanics, I and II, J. Math. Phys. 13 (1972) 833, 878,

10, Hermann, R., Geometry, Phyacis and Sycterma, Marcel Dekker,
New York, 1973.

A ]

RS e




Bl lanti o iial i a0 L T
TV TR s kil

TODA LATTICES , 207

\

11. Hermann, R., Geodcsice of singular Riemannian matrica,
Bull. Amer. Math. Soc. 79 (1973) 780-782.

12. Bogoyavlensky, 0. 1., On perturbations of the periodic
Toda lattiee, Corm. Math. Phys. 51 (1976) 201-209.

13, Moser, J., Finitely Many Maso Points on the Line Under
the Influence of an Expenential Potemital--an Integrable System,
Battelle Rencontres, 1974,

14. Olshanetzki, M. A., and A. M. Perelmonov, Completely inte-
grable Hamiltonian systems connected with semi-gimple Lie alge-
bras, Inv. Math. 37 (1976) 93-108.

15, van Moerbecke, P., The apectrum of the Jacobi matricee,
Inv. Math. 37 (1976) 45-61.

16. Kazhdan, D., B. Kostant, and S. Sternberg, Hamiltontan
group actions and dynamical systems of Calogero type, Comm. Pure
and Appl. Math., 31 (1978) 481-508.

17. Hermann, R., Some differential gecometric aspecte of the
Lagrange variational problem, 111inois J. Math. 6 (1962) 634-673.

18. Hermann, R., E. Cartan's geometric theory of partial
differential equations; Advances in Math. 1 (1965) 265-317.

19. Hermann, R., Lie Algebras and Quantum Mcchanieas,
W. A. Benjamin, New York, 1970.

20. Helgason, S., Differcntial Geomctry, Lic Groups and
Symmetric Spaces, Academic Press, New York, 1979.

21. Arnold, V., Mathemtical Methods of Claseical Mechanics,
MIR, Moscow, 1975. Springer Graduate Texts in Math., No. 60,
Springer-Verlag, New York.

THE ASSOCIATION FOR PHYSICAL AND SYSTEMS MATHEMATICS

54 JORDAN RD.
BROOKLINE, MASSACHUSETTS

O

y atidie g

e e Tra o A L S in 4

B S SIS e SN SR Mol et o

B T 7 ey

gl il




